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Abstract

Economic science is generally considered less viable than the physical sciences. Sophisticated mathe-
matical models of the economy have been developed but their accuracy is questionable to the point that
the present economic crisis is often blamed on an unwarranted faith in faulty mathematical models. In
this paper, we claim that the mathematical handling of economics has actually been reasonably success-
ful and that models are not the cause behind the present crisis. The science of economics does not study
immutable laws of nature but the complex human artefacts that are our economies and our financial
markets, artefacts that are designed to be largely uncertain. We could make our economies and our
markets less subject to uncertainty, and mathematical models more faithful to empirical data by
introducing more rules and collecting more data. Collectively, we have decided not to do so and
therefore models can only be moderately accurate. Still, our mathematical models offer a valuable
design tool to engineer our economic systems. But the mathematics of economics and finance cannot be
that of physics. The mathematics of economics and finance is the mathematics of learning and com-
plexity, similar to the mathematics used in studying biological or ecological systems.
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1. Introduction

In 1960 the physicist Eugene Wigner, recipient
of the 1962 Nobel Prize in Physics, wrote the now
famous paper The Unreasonable Effectiveness of
Mathematics in The Natural Sciences. Wigner
(1960) argued that the success of mathematics in
describing natural phenomena is so extraordinary
that it is in itself a phenomenon that calls for ex-
planation. In this paper, we argue that mathematics
in economics is reasonably effective and that the
reasons why it is reasonably effective deserve an
explanation. At the moment of this writing, the
world is going through the worst financial and
economic crisis since the Great Depression. Many
have pointed their fingers at the growing use of
mathematical models. We argue that mathematics
does not have much to do with the present crisis.

We do so first by discussing the fundamental
reasons why it is possible to apply mathematics to
economics and then by arguing that the use of
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mathematics in economics and finance can pro-
duce, and indeed has produced, reasonably accu-
rate forecasts. The object of science is to forecast;
the mathematical models used in economics can do
a reasonably good job of predicting some econom-
ic events and can provide information about when
it is not possible to make reliable forecasts. In
addition, it is possible to outline a research agenda
that would improve the science of economics. In
any other science, the aforementioned would be
considered a satisfactory achievement.

In a nutshell, we believe that the reason that
mathematics is only reasonably effective in eco-
nomics is because we apply mathematics to study
large engineered artefacts (i.e., economies or fin-
ancial markets), that have been designed to allow a
lot of freedom so as to encourage change and inno-
vation. The level of unpredictability and control is
clearly different when considering systems governed
by immutable natural laws as opposed to artefacts
constructed by humans. Some systems, such as
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economies or financial markets, are prone to crises.
Mathematics does a reasonably good job in describ-
ing these systems. But the mathematics involved is
not that of physics: It is the mathematics of learning
and complexity.

The reasonable effectiveness of mathematics in
economics is important in deciding on how to
prepare and train doctoral students in economics.
Colander (2007) has written extensively on this
issue and he has shown how mathematics has
transformed the way economics departments train
the next generation. He argues that graduate train-
ing in economics has improved since the 1980s
by becoming more focused on empirical research
and, despite the fact that there is still a strong
emphasis on mathematics, there is much more
focus on the application to meaningful economic
issues than on purely mathematical exercises.

2. Economics and the Natural Sciences

Let’s begin by discussing the differences be-
tween economics and the physical sciences. In the
three centuries following the publication of New-
ton’s Principia in 1687, physics has developed
into an axiomatic theory. Physical theories are ax-
iomatic in the sense that the entire theory can be
derived through mathematical deduction from a
small number of fundamental laws. Physics is not
yet completely unified but the different disciplines
that make up the body of physics are axiomatic.
Even more striking is the fact that physical phe-
nomena can be approximately represented by
computational structures, so that physical reality
can be mimicked by a computer program.

Though it is clear that economics has made
progress and will make additional progress only
by adopting the scientific method of empirical sci-
ence, it should be clear that there are significant
differences between economics and physics. We
can identify, albeit with some level of arbitrari-
ness, four major differences between economics
and the physical sciences:

1. Economics has little possibility of studying
simplified subsystems so must study a com-
plex global system.

2. Economics is an empirical science but the
ability to make experiments is limited when
compared to what is possible with the physical
sciences.
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3. Economics does not study immutable laws of
nature but a human artefact that is subject to
change due to human decision-making.

4. Economic systems are self-reflecting: the
knowledge accumulated on the system changes
the system itself.

One of the major sources of the progress made
by physics is due to the ability to isolate element-
ary subsystems, to come out with laws that apply
to these subsystems, and then to recover macro-
scopic laws by a mathematical process. For exam-
ple, the study of mechanics was greatly simplified
by the study of the material point, a subsystem
without structure identified by a small number of
continuous variables. After identifying the laws
that govern the motion of a material point, the
motion of any physical body can be recovered by
a process of mathematical integration. Simplifica-
tions of this type allow one to both simplify the
mathematics and to perform empirical tests in a
simplified environment.

In economics, we cannot study idealized sub-
systems because we cannot identify subsystems
with a simplified behavior. This is not to say that
attempts have not been made. Microeconomics, as
opposed to macroeconomics, attempts to study the
behavior of individuals as the elementary units of
economic systems. The real problem, however, is
that the study of individuals as economic “atoms”
cannot produce simple laws because it is the study
of a human economic decision-making process
which is very complex in itself. In addition, we
cannot perform experiments. Instead, we have to
rely only on how the only economic system we
know develops in itself.

Note that the possibility of studying elementary
subsystems does not require the existence of funda-
mental laws. For example, although the Schrodinger
equation of quantum mechanics is indeed a funda-
mental law, it applies to any system and not only
to microscopic entities. Fundamental laws are not
necessarily microscopic laws. We might be able to
find fundamental laws of economics even if we are
unable to isolate elementary subsystems.

There is a strong connection between fundamen-
tal laws and the ability to make experiments. By
their nature, fundamental laws are very general and
can be applied, albeit after difficult mathematical
manipulations, to any phenomena. Therefore, after
discovering a fundamental law it is generally
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possible to design experiments to test that same
law. In many instances in the history of physics,
critical experiments have suggested the rejection
of an established theory in favor of a new compet-
ing theory.

Our ability to make experiments in economics
is limited. Nevertheless, important research in
this sector has been carried out. In the 1970s,
Daniel Kahneman and Amos Tversky performed
groundbreaking research on cognitive biases in
decision-making. Vernon Smith studied different
types of market organization, in particular, auc-
tions. Kahneman and Smith were jointly awarded
the 2002 Nobel Memorial Prize in Economic
Sciences for their work (Tversky had passed
away in 1996). Research such as that conducted
by Kahneman, Tversky, and Smith changed the
perspective of economics as an empirical science,
though experimental economics does not allow
us to design experiments to decide between com-
peting theories as is the case with experimental
physics.

Perhaps the most important difference between
economics and physics is the fact that economics
attempts to determine laws that apply to a specific
self-reflective artefact (i.e., economies or financial
markets) while physics aims at discovering funda-
mental physical laws. The level of generality of
economics is intrinsically lower than that of phys-
ics. In addition, economic systems tend to change
in function of the knowledge accumulated, so the
object of inquiry is not stable.

As a result of all the above, it is unlikely that the
kind of mathematics used in physics is appropriate
to the study of economics and financial theories.
For example, we cannot expect to find any simple
law that might be expressed with a closed formula.
Hence, empirical testing cannot be done by com-
paring the results of closed formulas with experi-
ments but more likely by comparing the results
of long calculations. Thus the mathematical de-
scription of economic systems was delayed until
economists had high-performance computers to
perform the requisite large number of calculations.

Nor can we expect a great level of accuracy in
our descriptions of economic or financial phenom-
ena. If we want to compare economics to the natu-
ral sciences, we have to compare our knowledge of
economics with our knowledge of the laws that
govern macro systems. While physicists have been
able to determine extremely precise laws that gov-
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ern subsystems such as atoms, their ability to pre-
dict macroscopic phenomena such as earthquakes
or weather remains quite limited. Parallels between
economics and the natural sciences are to be found
more in the theory of complex systems than in
fundamental physics. In view of the above, it
should be clear that the methods of scientific in-
vestigation and the findings of economics might be
conceptually different from those of the physical
sciences. It would likely be a mistake to expect the
same type of generalized axiomatic laws in eco-
nomics that we find in physics.

3. An Historical Perspective on
Economics and Finance Theory

As we know them today, economics and fi-
nance theory are not unified sciences. They are
the result of a process of theoretical evolution over
the past two centuries that has produced different
disciplines. Economics as a separate discipline
developed in the eighteenth century. The birthday
of economics as a science can perhaps be placed
in 1776 with the publication of Adam Smith’s
The Wealth of the Nations. During the nine-
teenth century and the first half of the twentieth
century, economists increasingly tried to apply
the paradigm of empirical science to economics
in the sense that economics was increasingly
based on systematic empirical observations. How-
ever, the use of mathematics in economics re-
mained marginal. Even a profoundly innovative
and enormously influential work such as Keynes’s
General Theory (Keynes, 1936) makes little use of
mathematics.

The first attempt to create mathematical models
of the economy dates from the turn of the nine-
teenth century and is due to Pareto and Walras.
The models of Pareto and Walras were well in
advance of their time: computers were not avail-
able and only closed formulas could be tested
against empirical data.

The models of Pareto and Walras are classical
models based on the notion of free markets in
which a population of economic agents freely deci-
des what to produce, sell, and buy within the limits
of their budgetary constraints. The role of markets
as the optimal allocator of resources, matching of-
fer and demand, had already been put forward by
Adam Smith. Smith compared free markets to an
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“invisible hand” that coordinates the activity of
markets.

At about the same time, a radically different
view was put forward by Karl Marx in his Das
Kapital. Marx’s thinking was influenced by the
German philosopher Hegel. Following Hegel,
Marx thought that there is a sort of mechanical
necessity in historical processes, so that history
follows dynamic laws. He arrived at exactly the
opposite conclusion of classical economists: if
seen from the perspective of the large majority of
the population, markets are not optimal allocators
of resources but end up producing a highly skewed
distribution of wealth. Hence, the economy must,
and inevitably will, be planned.

During the first half of the twentieth century,
the objective of modeling the economy was put on
the backburner. There were, however, significant
conceptual developments. The Austrian economist
Schumpeter made a perspicacious analysis of
competitive markets, and concluded that competi-
tive economies can survive only through a process
of continuous innovation. Otherwise, competition
eliminates any residual profit. But the most im-
portant development of the first half of the twenti-
eth century, given also its practical importance, is
the work of John Maynard Keynes. On one side,
Keynes created the conceptual framework that
enabled the future development of economics,
identifying the key variables needed to describe
the economy and the flow of savings and invest-
ment. On the other side, he partially accepted
the view that free markets are not automatically
resource optimizers. Hence, there is the need for
government intervention in order to stabilize the
economy.

Immediately after World War II, computers
became a commercial reality. With computers,
economists had at their disposal a tool that allowed
them to perform approximate computations. They
started building large econometric models made of
many linear equations that link economic vari-
ables. The conceptual framework of these eco-
nometric models is essentially an engineering
framework: Economic quantities are treated as
objective physical variables linked by objective
relationships.

One of the first examples of an econometric
model is due to the Russian-American economist
Wassily Leontief who, in 1942, proposed the input-
output model.' This quantitative economic model
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is based on a large matrix that defines the ex-
changes between different economic sectors (see
Leontief, 1986). Seven years later, Leontief built
the first working example of an econometric
model for programming an input-output model
on the Harvard Mark II computer. Other macro-
econometric models were subsequently proposed,
input-output type models as well as models
based on sets of differential equations. The first
global macro-econometric model was initiated in
1968 with the Wharton Economic Forecasting
Associates LINK project under the direction of
Lawrence Klein. This project helped earn Klein
the 1980 Nobel Memorial Prize in Economic
Sciences.

Paul Samuelson, recipient of the 1970 Nobel
Memorial Prize in Economic Sciences, was one of
the key actors in the development of modern math-
ematical economics in the late 1940s and early
1950s. Samuelson was a student of Schumpeter
and Leontief at Harvard. Through one of his men-
tors, the mathematician Edwin Bidwell Wilson,
Samuelson was deeply influenced by the work of
Josiah Willard Gibbs, founder of thermodynamic
chemistry. In analogy to the concept of thermody-
namic equilibrium, Samuelson established the
principle of comparative statics in economics.
Comparative statics had already been introduced
by John R. Hicks in his 1939 book Value and
Capital. However, Hicks put his mathematical
proofs in the appendices while Samuelson “flaunts
[mathematics] in the text” as Samuelson’s student
Stanley Fisher remarked (Fisher, 1987, p. 235).
Samuelson’s methodological approach was very
close to the operationalism introduced in physics
by Percy Bridgman, recipient of the 1946 Nobel
Prize in Physics. Samuelson used mathematics to
unify and clarify the overlappings and fallacies in
neoclassical economic theory in his 1947 book
Foundations of Economic Analysis. In Founda-
tions, Samuelson shows that almost any economic
behavior can be described as a constrained optimi-
zation problem. His body of work on the mathe-
matical structures underlying neoclassical theory
encouraged others to pursue a mathematical ap-
proach to a wide range of economic theories and
models. Among them was Robert Merton, Samule-
son’s doctoral student and a co-recipient of the
1997 Nobel Memorial Prize in Economic Sciences.
Merton had initially pursued a doctorate in applied
mathematics at Cal Tech.
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Three major theoretical developments have
occurred since the 1970s:

1. the development
theories;

2. the opening of option markets and later a
much broader array of derivatives with the
consequent development of the mathematics
of derivatives; and

3. the development of econometrics as we know
it today.

of general equilibrium

In the next section, we will discuss these the-
ories that now form the state-of-the-art of econom-
ics. In doing so, we will use the term mathematical
economics in a sense similar to the use of mathe-
matical physics: mathematical economics is a
type of economics where the economic laws are
expressed in mathematical terms as a coherent the-
ory. However, we acknowledge that mathematical
economics does not use the same logical structure
of mathematical physics, but is probably more sim-
ilar to mathematical biology.

4. A Critical Look at the State of
the Art of Economics

Let’s first briefly discuss the role of statistics in
economics. Uncertainty plays a fundamental role
in theories of economics and finance. Not only are
we in practice unable to make precise forecasts,
we assign an economic value to uncertainty.
The classical and still fundamental paradigm for
handling uncertainty mathematically in economics
and finance is probability theory, though different
paradigms such as fuzzy set theory have been
proposed.

In the 1920s and 1930s, there were doubts as
to the possibility of applying probability theory to
economics. It was argued that while statistical esti-
mates require independent samples, economic
variables are deeply interrelated. A major clarifica-
tion came in 1944 from Trygve Haavelmo. The
work of Haavelmo, recipient of the 1989 Nobel
Memorial Prize in Economic Sciences, ushered in
modern econometrics. Haavelmo demonstrated
that the application of statistics to economics did
not require that empirical samples be independent.
We only need to assume, after imposing modeling
relationships, that residuals are independent. In
modern terms, we view econometric models as
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“probes” that extract meaningful information from
empirical data and leave out only a residual noise.
General equilibrium theories (GETs) were the
dominating theoretical development in the last
three decades of the twentieth century. The starting
point of GET is the role of economic agents. The
key principle on which GETs are based is the equi-
librium between economic expectations and eco-
nomic realizations. As expectations change the
economy, it is stated, there must be a point of
equilibrium where, albeit statistically, expectations
and realizations are identical. Let’s first outline the
development of the theory and then discuss it.

The econometric models prior to the 1970s did
not include market agents and their preferences. In
1976, Robert Lucas, recipient of the 1995 Nobel
Memorial Prize in Economic Sciences, articulated
what has become known as the “Lucas critique.”
Lucas observed that, without an explicit consider-
ation of economic agents, no model can be used to
study the effects of policy changes because models
cannot be the same prior to and after a change in
policy due to the reaction of economic agents.
Following Lucas, it was advocated that macroeco-
nomic models should have a microeconomic foun-
dation, that is, that macroeconomic models should
explicitly include market agents.

In 1961, the economist John Muth proposed his
rational expectations hypothesis. Muth argued that
it is impossible that economic agents are systemat-
ically wrong and made the assumption that agents’
expectations and the real economic outcomes al-
ways coincide. Following Lucas and others, the
rational expectations hypothesis became the main-
stream paradigm and GET became the mainstream
theoretical model of economics.

From the point of view of the scientific method,
one should consider a GET a theoretical hypothesis
to be validated. A GET is essentially the hypothe-
sis that any economy or market can be described
by the maximization of a Hamiltonian functional.
As with all variational problems, a GET is a math-
ematically complex problem which includes an un-
known utility function. In itself, any GET is not a
highly restrictive hypothesis. Michael Harrison and
David Kreps (1979) and David Kreps (1981)
demonstrated that every stochastic price process
that does not admit arbitrage can be rationalized
as a GET. Therefore, in itself GETs do not shed
any light on real economic processes. The physical
equivalent of a GET would be the claim that
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particles follow the maximization of a Hamiltonian
without any specification of the Hamiltonian; any
smooth trajectory would be possible.

The empirical content of a GET is in the speci-
fication of the utility functions and of the exoge-
nous variables and constraints. And this is why the
empirical success of GETs is very limited. If math-
ematically tractable utility functions are specified,
GETs yield processes that (at most) share some
general aspect with real economic processes. There
is no possibility of making even an approximate
economic forecast using GET.

The pivotal role of GET in modern economics is
due to the conceptual appeal of rational expecta-
tions. Without embarking on a discussion as to
why rational expectations have so much appeal, it
is quite obvious that there is no tenable empirical
or logical basis behind rational expectations. Eco-
nomic agents make forecasts based on past experi-
ence, they make mistakes, and their mistakes can
be systematic. As demonstrated by Harrison and
Kreps, one can always rationalize the economic
outcome as if it were produced by agents endowed
with perfect stochastic forecasts. In other words,
even if we assume agents make decisions based
on realistic forecasts using past data, the ensuing
price processes can still be represented by the max-
imization of a Hamiltonian. However, the Hamil-
tonian will be a mathematical construct only
remotely related to the eventual utility functions
that represent the decision-making process of
agents.

GETs are axiomatic theories. Actually they
were developed following the model of axiomatic
mathematical theories proposed by the Bourbaki
Group in Paris.? The level of mathematical rigor
of GETs is superior even to the level of mathemat-
ical rigor of physics. GETs were developed having
in mind the logical consistence of a mathematical
model but without a parallel preoccupation for the
empirical validation of the theory. The extreme
mathematical rigor of GET without any solid em-
pirical foundation is partly responsible for the
many reactions against the use of mathematics in
economics. With the GET paradigm in mind, many
felt that mathematics could not explain economics.

The second major development since the 1970s
was the development of the mathematics of deriv-
atives. In 1973, Myron Scholes, co-recipient with
Robert Merton of the 1997 Nobel Memorial
Prize in Economic Sciences, and Fischer Black
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(deceased before the attribution of the prize) pub-
lished the first formula for the theoretical pricing
of option-type derivatives. Since then, a huge mar-
ket for derivatives has developed: At their peak
in 2008, the total value of derivatives contracts
outstanding worldwide was estimated to be in the
range of USD 650 trillion with some USD 2 trillion
traded daily. As regards the US economy, consider
that the notional value of the U.S. derivatives mar-
ket was USD 176 trillion in 2008,3 one order of
magnitude larger than both the 2008 U.S. GDP
which was approximately USD 14 trillion, and
the 2008 U.S. stock market capitalization which
was also around USD 13 trillion. It is then not
surprising that the development of derivatives pric-
ing models became the largest sector in financial
modeling.

Though the modeling of derivatives in and of
itself does not add much to our understanding of
economic phenomena, the creation of a derivatives
market whose notional value is an order of magni-
tude larger than the real economy has significantly
changed economic phenomena and the relationship
between finance and the real economy. Derivatives
can be used for managing risk but also for specula-
tion, with a potentially high level of leverage.
For example, the traded value of options is small
in comparison with the value of the underlying
stocks and the potential losses that can be incurred.
Derivatives allow market agents to make bets on
the direction of market movements; these bets can
be large multiples of the amount invested.

In practice, the presence of derivatives has
added to the difficulty of mathematical modeling
of the economy. In financial markets, and a fortiori
in the entire economy, there are now hidden risks
due to a web of interacting contracts, often the
object of speculation. This risk has been present
since the introduction of derivatives, but has
reached new heights with the diffusion of deriva-
tives that include a systemic risk, such as credit
derivatives. The diffusion of derivatives has be-
come a major macroeconomic phenomenon in it-
self; as such, it needs to be taken into consideration
in macroeconomic modeling.

The third major development in the last three
decades of the twentieth century is the emergence
of modern econometrics and, subsequently, of the
discipline loosely refered to as econophysics. Both
modern econometrics and econophysics are based
on a combination of economic theory, statistics,
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and learning theory. Both are also based on the
principles of an empirical science: the accumula-
tion of empirical data, the formulation of theoreti-
cal hypotheses, and testing. However, the key point
that separates the physical sciences and economet-
rics is “learning”. In the physical sciences, funda-
mental laws are assumed to be the product of some
theoretical intuition. There is a component of
learning in the physical sciences as parameters are
empirically measured. However, due to the size of
available samples and the simplicity of laws,
learning is effectively measurement. In economet-
rics and econophysics, in contrast, learning plays a
crucial role. Models have a more universal nature
in the sense that models can fit any set of data with
arbitrary precision with an appropriate choice of
parameters. But fitting sample data is no guarantee
that the model will also fit out-of-sample data. Ac-
tually, the contrary is true. The accuracy of models
in fitting sample data has to be constrained in order
to capture only general features of the data and
improve out-of-sample performance.

Learning theory suggests that, given a sample of
data, the complexity of the models we can learn
from the data is constrained by the size of the
samples. If we have small samples, we can only
learn very general models. This conclusion is not
specific to economics but is shared by all the
sciences: We can only learn from past data and
what we can learn is a function of the intrinsic
complexity of the process and the size of our data
sample.

5. Crises and Economic Theory

A frequent objection to economics as a mathe-
matical science is the fact that economic evolution
is driven by single large and unpredictable events.
This notion has been popularized by Nassim Taleb,
an ex-trader who coined the term “black swans,” to
indicate exactly this type of unpredictable, large,
and generally adverse event. Taleb (2007) suggests
that we rationalize black swan-type events after
they actually occurred but that rationalizations
are, in most cases, artificially constructed; fore-
casting such an event prior to its occurrence was,
Taleb maintains, not possible.

There are two principal reasons why we object
to the belief that the unpredictability of crises pre-
cludes the use of mathematics in economics. The
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first is based on the observation that large unpre-
dictable events also exist in other domains such
as physics, yet physicists do not abandon the use
of mathematics because of the unpredictability
of events. The second reason is because our eco-
nomic systems are designed to allow large areas of
unpredictability.

Single unpredictable events exist in the physical
sciences as well as in economics, and this at every
stage of the science. For example, in the past we
witnessed many catastrophic events related to
engineered artefacts, such as the collapse of the
Tacoma Narrow Bridge in 1940 or the 1954 crash
of the Comet airplane. In both cases, it was later
discovered that, had we then the science that we
have now, these events could have been predicted.
Presently, we are unable to predict, and hence con-
trol or mitigate the effects of, turbulence, earth-
quakes or the minimal cell modifications that
might cause a terminal disease. But we can identi-
fy factors or regions that would make catastrophic
events more likely. Thus a plane will avoid flying
into a region of turbulence, buildings will be
designed to withstand seismic movements, and a
person might wish to avoid smoking to reduce the
risk of cancer.

However, scientists do not relinquish the mathe-
matical description of physical events because
their ability to describe and forecast them fails on
some occasions. Science has given up the perfect
determinism of eighteenth century mechanics: We
now consider that physical laws are probabilistic.
Not only are physical laws probabilistic at the mi-
croscopic level, but uncertainty carries over at
macroscopic levels in complex systems. We accept
this type of unpredictability and try to reduce its
negative consequences by adopting principles of
safe design.

We believe that most black-swan crises in fi-
nance were indeed predictable, at least in the sense
that their likelihood could have been gauged; it is
the design of the system that makes their occur-
rence more difficult to predict. A first consideration
is the availability of data. We cannot make fore-
casts without the data, not in the physical sciences
and not in economics and finance. In financial
systems, especially since the 1990s, there are entire
market areas open to speculation without any
data that describe these areas. For example, hedge
funds are not obliged to disclose how they make (or
lose) their money, including shorting stocks and
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borrowing. In the midst of the market turmoil of the
summer of 2007, one chief investment officer of
equities compared the management of equity port-
folios without data on the amount of short selling
and leveraging to driving at night on the highway
when someone else has their brights on: no one else
can see anything.

Other data are missing simply because of the
complexity of gathering and analyzing them. In
the 1950s, a good mechanic was able to diagnose
a car engine by listening to the sound of the engine
and test driving the car. Fifty years later, a trained
ear and a drive no longer suffice: specialized
equipment is used to gather a large amount of data
to diagnose the engine. If we consider a higher
level of complexity, say a jet engine, the process
of gathering and analyzing maintenance data has
developed into a separate engineering field where
literally thousands of separate inputs are gathered
and analyzed to check an aircraft engine. Consider
the heroic days of software engineering when For-
tran programmers spent sleepless nights analyzing
memory dumps. Now sophisticated diagnostic and
software engineering tools are, ultimately, the true
enablers of modern software development.

Consider that in the field of derivatives there is
no system for gathering and analyzing the data
comparable with what would be in place for an
engineering system of a similar size. With trading
and notional values an order of magnitude larger
than real economies, one might expect to see a
monitoring system for the web of derivatives mu-
tual dependences, including bankruptcies of the
counterparties. This system, however, does not ex-
ist. Large banks are required only to monitor their
own risk with systems of their own design, albeit
with a bit of oversight from the Basel Committee
on Bank Supervision. There is no coordinated con-
trol of the concentration of risk due to the mutual
relationships. A physical parallel would be a situa-
tion where planes take off, set their route, and land
at the order of the pilot without any central control.
Observe that, from a scientific point of view, much
of the supposed inability of economic and financial
modeling to forecast crises is due to the fact that
data are neither gathered nor analyzed.

However, even if all the relevant data were
known, the study of complex systems has revealed
that there are situations that are genuinely unpredict-
able. There are many sources of non-predictability.
Nonlinearities and nonlinear feedbacks are common
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sources of non-predictability. It is now widely
accepted that, in many sectors of modern economies,
the law of diminishing returns has to be replaced
by the law of increasing returns. Increasing returns
are typically nonlinear, create positive feedbacks,
and possibly instabilities. The theory of chaos has
demonstrated that nonlinear systems can be so sensi-
tive to even small changes as to become totally
unpredictable.

Other sources of unpredictability come from ag-
gregation phenomena. The study of percolation
networks and random graphs has demonstrated that
there are critical probabilities of mutual interaction
between the elements of a network. When an
interconnected network system approaches critical
probabilities, a giant component might suddenly
appear, thereby connecting all network compo-
nents. There is an entire statistical discipline, ex-
treme value theory (EVT), devoted to analyzing
and estimating the statistics of rare phenomena.

These aggregation phenomena are the result of
the complexity of the system, of the topology of
the network, and of mutual interactions. Unpredict-
able phenomena of this type exist not only in eco-
nomics but also in complex physical systems, such
as fluids and weather.

We now have many tools that allow us to iden-
tify what systems are likely to become unpredict-
able and possibly originate catastrophic behavior.
Even if we cannot control unpredictable complex
systems, we can in many cases identify them and
mitigate the consequences. For example, in the
area of economics, our tool set includes the estima-
tion of fat-tailed distributions performed by EVT
and the analysis of the expansion of credit and
money creation. Had we collected the data, we
would also have tools to analyze large networks of
interconnected derivatives, similar to those used in
analyzing communications and the web.

In the field of engineering, engineers try not
to design unpredictable complex systems: The sta-
bility of the design is a major preoccupation of
designers and rightly so. When complexity cannot
be avoided, engineers closely monitor the environ-
ment to ensure that we avoid being caught in un-
predictable catastrophic phenomena. Economies
and financial markets are also engineered artefacts.
They could be designed and monitored so to be
made safer by collecting more data and appropriate
regulation. Actually, as we are now being made
painfully aware, they were not so designed or
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regulated. This brings us to the question as to
whether we can predict what type of “system de-
sign” we will use in engineering our economies.

It can be argued that, even if we have the tools
to avoid risky system design, the really critical
question is whether we will use these tools or not.
This is a difficult question as ultimately the real
catastrophic risk resides in our collective willing-
ness to run catastrophic risks.

Let’s reformulate the above. Modern science—
whose main mathematical tool is differential
equations—is based on the separation between
basic fundamental laws and initial and boundary
conditions. We consider basic laws as a given
universal while initial and boundary conditions
can be arbitrary. The principle of reductionism,
which is the ultimate goal of the scientific end-
eavor, is to determine a small set of basic laws
from which we can determine any other physical
law with a mathematical process. Are initial and
boundary conditions completely arbitrary or are
they somehow determined within the system of
the basic laws?

In the physical sciences, scientists began to in-
vestigate this type of problem in the theory of
complex systems. One of the objectives of the
study of complexity is to investigate if and how
physical laws justify the appearance of the dynam-
ic Jaws of complex systems. Following the tenets
of reductionism, it should be possible to explain
the dynamics of a complex system (i.e., a system
made of many interacting parts) as a mathematical
derivation from basic laws. Let’s assume that this
conjecture is correct: Given initial and boundary
conditions, any material object, regardless of its
structural complexity can, in principle, be de-
scribed with the fundamental physical laws. How-
ever, this is only a partial answer to the problem
of complexity. There is also the question of self-
organization: Can we justify the emergence of
complex structures using the current laws? Can
we justify the emergence and the evolution of
complexity with physical laws or do we need addi-
tional principles? The answer is not obvious and
the problem is still unresolved.

Getting back to economics, the field of mathe-
matical economics is presently not able to explain
the deep structural changes in economic systems.
We can describe mathematically an economic sys-
tem if its structure is well-defined but we cannot
predict how economic structures will change.
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These changes are of a social and political nature
and eventually include an element of innovation
which is very hard to model. For example, it would
have been difficult for economic models to predict
the emergence of the derivatives markets. These
questions go well beyond the understanding of the
dynamics of economic systems once they are well-
defined.

Are these the ultimate black swans? For exam-
ple, can we say that the real black swan of the
present crisis is the fact that so many facts have
been overlooked for so long? Or is it the fact that
we cannot predict what type of solutions will be
adopted?

Presently, answering these questions is pure
speculation. We have the tools to understand and
describe economic systems when they are engi-
neered. We have the tools to understand whether
economic systems are more or less dangerous but
we have neither the tools to foresee innovation nor
the tools to understand what systemic choices we
will make collectively even in the absence of inno-
vation. But it would be futile to deny the power of
descriptive mathematical tools that can influence
major choices.

6. Why Mathematics is Reasonably
Effective in Economics

Economics is ultimately the study of human
economic decision-making processes integrated
with the study of complex systems. In aggregate
and in simple situations, human decision-making
processes exhibit significant regularities, allowing
for prediction. But many economic decision-
making processes are not simple as they are deter-
mined by the interplay of many different variables.
The outcome therefore becomes hard to predict.
The difficulty in studying economics as a mathe-
matical process is not the unpredictability of hu-
man behavior per se but the complexity of the
interactions. This fact is typical of complex sys-
tems: it does not preclude the study of economic
systems but suggests the use of the conceptual
tools that are being developed in the field of
complexity.

In particular, we have presently to rely on
learning given that we have not been able to deter-
mine fundamental laws validated through experi-
ments. The attempt to define a theoretical paradigm
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such as GET has, in practice, not produced results
given that there is no way, either empirically or
theoretically, to determine the Hamiltonian of the
system. The crucial point is that in order for an
axiomatic theory to be practically meaningful, all
its axiomatic principles need to be simple and em-
pirically meaningful. Newtonian dynamics would
have been an empty theory if force fields could not
have been specified. We need a framework simpler
than the GETs, more in line with empirical data.

Estimating models of complex systems requires
a lot of data. Learning theory tells us that the ability
to determine models of complex systems is con-
strained by the size of data samples. Ultimately, in
economics and finance theory we do not have a lot
of data. The real issue is that there are only a few
years between any two major structural changes.
Apparently, we have a lot of data because we have
many individuals. For example, in financial mar-
kets we have thousands of time series of prices and
returns. However, a large number of individuals
create a large number of possible mutual interac-
tions. As a consequence, we can say that in eco-
nomics and in finance theory, data are scarce given
the complexity of the models. The real limitation in
estimating dynamic models is the small size of
samples along the time direction.

Hence we can only estimate simple models. For
example, if we want to understand the evolution of
stock market prices using factor models, we can
only estimate a handful of factors, less than 10,
even if markets are formed by thousands of stocks.
Different economic systems and different financial
markets are not all equally suitable for mathemati-
cal description and the level of predictability is
different for different economic contexts.

We believe that mathematical economics is
reasonably effective because all these elements
can be put in a theoretical mathematical context.
We can estimate uncertainty and we can under-
stand if we have sufficient data to make forecasts.
The unpredictability of economies is somewhat
designed because, either explicitly or implicitly, it
is believed that unpredictability breeds opportu-
nities. We abhor total predictability because we
believe that it does not leave room for exploiting
change and innovation. History offers many exam-
ples of political and economic systems that
became predictable as they became highly static,
incapable of change and innovation, and finally
collapsed.
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There is a strange fallacy in most discussions on
the effectiveness of mathematics in economics. On
one side, the inability to make sure predictions is
blamed as a major defect of mathematical econom-
ics. On the other side, we abhor predictability
because we believe it takes out opportunities. But
if we design an economic system so that it has
many opportunities and many uncertainties, then
mathematical modeling can do nothing but register
and measure the unpredictability that was designed.
This is not to say that mathematical economics
cannot be improved. On the contrary, there is much
room for improvement. However, many of the
achievements are substantial. Let’s mention a few
of them with a strong empirical bearing.

We can discriminate between economic phe-
nomena that follow benign Gaussian distributions
from those that follow fat-tailed distributions. The
discrimination is not perfect because of the nature
of the problem but we can discriminate and we can
estimate if we have enough data to make a reliable
estimation. The estimation of fat-tailed distribu-
tions has substantially improved our identification
of risky events.

We have made important progress in under-
standing the cyclical behavior of many economic
time series. We have learned that the performance
of most models is subject to cyclical fluctuations—
the autoregressive conditional heteroscedasticity
(ARCH) effect identified by Robert Engle. This is
a surprising and important phenomenon that seems
to be almost universal. Another important discov-
ery of cyclical behavior is cointegration, a concep-
tual tool to express the fact that two or more time
series can individually fluctuate randomly but still
remain closely linked so that their relative distance
is subject only to cyclical fluctuations. Cointegra-
tion was identified by Clive Granger. For their
joint discovery of ARCH behavior and cointegra-
tion, Engle and Granger were awarded the 2003
Nobel Memorial Prize in Economic Sciences. Both
ARCH and cointegration deal with cyclical phe-
nomena. The analysis of cyclical fluctuations has
now been extended, with the same abstract mathe-
matical structure, not only to the amplitude of vari-
ables but also to the time between observations.

Tools to understand aggregation phenomena, for
example clustering and random graphs, have also
been developed. This is an important step towards
understanding self-organization and the criticalities
associated with self-organization. Random graphs
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and percolation structures exhibit a critical behav-
ior such that, when the probability of interactions
between two adjacent nodes is close to a critical
value, the entire network becomes connected. This
behavior has been exploited to explain market phe-
nomena such as panic sales in financial markets
when all market participants make the same invest-
ment decisions.

In connection with these tools, a well-articulated
theory of learning has now been developed. The
trade-offs between model complexity and sample
size, as well as how to constrain model complexity
in function of the data, are now better understood.
New tools, such as random matrix theory to gauge
the amount of information genuinely present in a
data sample, are starting to be employed.

Economists also have tools to collapse many
variables into a small number of important predic-
tors and explanatory variables. The use of hidden
variables and factor models has made considerable
progress and economists can now determine dy-
namic factor models even of large numbers of
time series.

Economists then have reasonably good tools
that allow them to evaluate the level of unpredict-
ability of economic systems and to make forecasts
whose quality is in agreement with the estimated
level of uncertainty. These tools work when sys-
tems are sufficiently stable.

There are many areas where prevailing mathe-
matical models could be improved. However, that
improvement will critically depend on the type of
economic system design that we adopt. We are
now in a time of crisis and we can expect signifi-
cant changes. Mathematical economics will be
more or less effective in function of these changes
we will collectively make.

Notes

1. Jan Tinbergen, a co-winner of the 1969 Nobel
Memorial Prize in Economic Sciences, studied
mathematics and physics and wrote his disser-
tation on minimization problems in physics
and economics. Tinbergen developed the first
econometric model in the 1930s and later de-
veloped the first macroeconomic model for the
Dutch Government. However, in the 1930s,
computers were not available. To our knowl-
edge, Leontief was the first to run a computer-
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ized model using one of the first computers
available at that time.

2. The Bourbaki Group was a group of leading
mathematicians in Paris including Jean Dieue-
donné, Laurent Schwartz, and André Weil, who
adopted the collective pseudonym of Nicolas
Bourbaki. The Bourbaki Group put the accent
on rigorous axiomatization of mathematics.

3. Asreported in OCC Derivatives Report.
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